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ABSTRACT: A Pd(0)-catalyzed double cyclization of easily H
available o-bromoanilides leading to strained [3,4]-fused oxindoles
was developed. The reaction proceeded through a highly ordered
sequence involving key carbopalladation, 1,4-Pd migration, and

C(sp*)—H functionalization steps.

iaryls are important structural units found in many

bioactive natural products, marketed drugs, and advanced
materials.' Among many different synthetic approaches,
transition-metal-catalyzed cross-couplings of organometallics
(Ar-M) with aryl(pseudo)halides Ar-X (e.g, Suzuki—Miyaura,
Stille, Neigishi, and Hiyama couplings) have met with great
success (eq 1, Scheme 1).” To avoid the use of organometallics

Scheme 1. Transition-Metal-Catalyzed Synthesis of Biaryls
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(Ar-M), two alternatives have emerged, namely direct cross-
coupling between Ar-H and Ar-X (eq 2) and cross-dehydrogen-
ative coupling (CDC).*> Both routes involve a C(sp*)—H
functionalization step.® Inherent to the CDC reaction
mechanism, an external oxidant is generally required to
regenerate the active catalytic species.

In continuation with our current research interest in the area
of palladium-catalyzed C—H functionalization reaction,” we
report herein a palladium-catalyzed double cyclization of easily
available o-bromoanilides 1 for the synthesis of strained [3,4]-
fused oxindoles 2 (eq 4, Scheme 1). In this transformation, an
appropriately positioned internal aryl bromide served both as
an oxidant and a trigger to initiate the domino process leading
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Br_H Pd(OAc); (0.05-0.1 equiv)
5_f = (o Tl 5 P(Mes)4 (0.1-0.2 equiv)
R _ \—.ﬁ PhNEt; (3.0 equiv)
N -
ao KOPIv (2.0 equiv) R2-f-
R4 DMA (c 0.2 M), 100 °C
1 22 examples, up to 97% yield

to the formation of one C(sp*)—C(sp’) and one C(sp?)—
C(sp*) bond with concurrent creation of a quaternary carbon
center. Although many efficient methods have been developed
allowing the rapid access to diversely functionalized oxindoles
as well as spirooxindoles,® there are only few methods available
for the direct synthesis of [3,4]-fused oxindoles from simple
linear precursors.”® Structurally, compound 2 is a hybrid
between oxindole and fluorene motifs. The latter is also an
important motif in organic dyes,” molecular superconducting
materials,'® and organic light-emitting diodes"" and is found in
the structure of antiviral'> and antimalarial drugs."® Since both
oxindole and fluorene are important pharmacophores, a hybrid
structure could be of potential interest in medicinal
chemistry."*

We began our investigation using the easily accessible (E)-N-
(2-bromophenyl)-N-methyl-2,3-diphenylacrylamide (1a) as a
model substrate.'® Applying the conditions we developed
previously in the related studies [[Pd(OAc),, PCy;HBE,,
CsOPiv/PhNEt, (1/1), DMA, 140 °C],® the expected [3,4]-
fused oxindole 2a was formed in 39% yield together with 1-
methyl-3,4-diphenylquinolin-2(1H)-one (3a) in a 1:1 ratio
(entry 1, Table 1). The formation of quinolinone 3a could be
accounted for by a sequence involving 6-endo-trig cyclization/ -
hydride elimination, although this cyclization mode is generally
considered to be less favorable relative to the alternative 5-exo-
trig cyclization.'®"” Using potassium pivalate as a base
improved the selectivity (2.5/1) in favor of the desired
tetracycle 2a (entry 3). When P(o-tolyl); was used as a ligand
instead of PCys,, 2a was isolated in 81% yield (entry 4, Table 1).
Using bulky PMes; in combination with potassium pivalate
(KOPiv), the yield of 2a was further increased (84% at 90%
conversion, entry S). Interestingly, by adding N,N-diethylani-
line (2.0 equiv) to the reaction mixture, the reaction reached
completion furnishing the desired [3,4]-fused oxindoles in 97%
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Table 1. Synthesis of [3,4]-Fused Oxindoles: A Survey of
Reaction Conditions”
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entry ligand base(s) ratio 2a/3a"  yield® (%)
1 PCy,;HBF,  CsOPiv/PhNEt, (1/1) 1.0 38

2 PCy,HBF,  CsOPiv L1 42b

3 PCy;HBF,  KOPiv 25 65"

4 P(o-tolyl); KOPiv 9 81

57 PMes, KOPiv >20 84

6 PMes; KOPiv/PhNEt, (1/1) 93

7¢  PMes, KOPiv/PhNEt, (1/1) 97

87 DPMes, KOPiv/PhNEt, (2/3) 93

“All reactions were carried out under nitrogen atmosphere using la
(0.05 mmol), Pd(OAc), (0.1 equiv), ligand (0.2 equiv), and base (2.0
equiv) in DMA (¢ 0.1 M) at 140 °C. “Determined by 'H NMR.
“Isolated yield. “Conversion = 90% ('H NMR). “Reaction temperature
100 °C./Pd(OAc), (0.05 equiv), PMes; (0.1 equiv), ¢ 0.2 M.

isolated yield. Similar efficiency was observed when the loading
of Pd was reduced from 10 to S mol % (entry 8, Table 1).
Opverall, the optimized conditions consisted of heating a DMA
solution of 1a (c 0.2 M) at 100 °C in the presence of Pd(OAc),
(0.05 equiv), PMes; (0.1 equiv), KOPiv (2.0 equiv) and
PhNEt, (3.0 equiv). Under these conditions, tetracycle 2a was
isolated in 93% vyield (entry 8). The structure of 2a was
confirmed by single-crystal X-ray structural analysis.

2a

1]

With the optimized conditions in hand, the scope of the
domino process was next studied. When N-(p-methoxybenzyl)-
and N-benzyl-substituted anilides were subjected to reaction
conditions, the desired compounds 2b and 2¢ were obtained in
yields of 90% and 81%, respectively (Scheme 2). Electron-
donating (Me, OMe) and electron-withdrawing (Cl) sub-
stituents on the ring A were well tolerated as evidenced by the
high yield obtained for compounds 2d—g. The influence of
substitution on the ring B of anilide was subsequently
examined. Substituents at the para-position regardless of its
electronic nature (methyl, phenyl, methoxy, and fluoro) have a
negligible effect on the outcome of the reaction providing
tetracyclic [3,4]-fused oxindoles (2h—k) in excellent yields. In
the case of meta-substituted substrates, two regioisomers could
be formed and the regioselectivity was found to be substituent
dependent. With a m-methyl substituent, the cyclization
occurred exclusively at the less hindered position to afford 2n
in excellent yield. Similarly, 2-naphthyl-substituted substrate
afforded 21 as a single compound. However, the regioselectivity
was diminished with a substrate having a dioxolanyl substituent
leading to a mixture of two regioisomers (20/20" = 55/45).
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Scheme 2. Synthesis of [3,4]-Fused Oxindoles: Scope
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“All reactions were carried out under nitrogen atmosphere using la
(0.1 mmol), Pd(OAc), (0.05 equiv), Mes;P (0.1 equiv), PhNEt, (3.0
equiv), and KOPiv (2.0 equiv) in DMA (c 02 M) at 100 °C.
“Pd(0Ac), (0.1 equiv), Mes;P (0.2 equiv). “Single isomer. 9Only the
major regioisomer is represented (the ratio was determined by 'H
NMR analysis). “Pd(OAc), (0.2 equiv), Mes;P (0.4 equiv).

Next the effect of substitution on the double bond was
evaluated (2p—w). Terminal unsubstituted double bond
furnished the desired compounds in excellent yields (2p—r).
With a trisubstituted double bond (R* = Ar), the reaction was
insensitive to the electronic nature of the R* group providing
the desired tetracycles (2s—w) in excellent yields.

A possible reaction pathway accounting for the conversion of
1 to 2 is depicted in Scheme 3. An oxidative addition of an Ar—
Br bond to a Pd(0) species followed by an intramolecular
carbopalladation gave intermediate A in which the o-alkyl-
Pd(II) function was ideally positioned to activate the
neighboring aromatic C(sp’)—H bond to afford a five
membered palladacycle B."® A formal proton transfer from B
resulted in a net 1,4-palladium shift from the alkyl to the aryl
position.'” The so-generated Pd(II) species would then activate
the neighboring C4 position of oxindole to furnish after
reductive elimination the desired tetracyclic oxindole 2 with the
concurrent regeneration of the active Pd(0) species. In the case
of R* = aryl, it is worth noting that formation of spirooxindole 4
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Scheme 3. Possible Reaction Pathway

H

via a 7-membered spiropalladacycle E was not observed
regardless of the electronic properties of the aryl substituent.
To gain some insight into the reaction mechanism, a labeling
experiment was carried out. Submitting deuterated substrate
1p-D, to the standard reaction conditions afforded 2p” in which
a deuterium was partially incoporated at C9 of the oxindoles
(eq 1, Scheme 4). The result of this control experiment

Scheme 4. Deuterium-Labeling Experiments
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indicated that 1,4-palladium migration might be reversible. A
one-pot intermolecular KIE experiment (KIE = 1.1) suggested
that C(sp*)—H activation was not the catalyst turnover limiting
step (eq 2, Scheme 4).%°

In conclusion, we have developed a new Pd-catalyzed
domino reaction allowing an efficient synthesis of tetracyclic
[3,4]-fused oxindoles in high yields from simple o-bromoani-
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lides. In this transformation, one C(sp?)—C(sp®) and one
C(sp*)—C(sp*) bond were formed with concurrent creation of
a quaternary carbon center. A transient 6-C(sp>)—Pd species
generated in situ by an intramolcular carbopalladation served as
a lynchpin to activate successively the two C(sp*)—H bond
leading to the formation of an aryl—aryl bond.
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